Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Sci ; 115(3): 698-705, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38221718

ABSTRACT

Hematopoietic stem cells (HSCs) are a rare population of cells found in the bone marrow that play a critical role in lifelong hematopoiesis and the reconstitution of the hematopoietic system after hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation remains the only curative treatment for patients with refractory hematologic disorders, and umbilical cord blood (CB) serves as an alternative stem cell source due to its several advantageous characteristics, including human leukocyte antigen flexibility and reduced donor burden. However, CB also has the disadvantage of containing a small number of cells, resulting in limited donor selection and a longer time for engraftment. Therefore, the development of techniques to expand HSCs ex vivo, particularly umbilical CB, is a goal in hematology. While various combinations of cytokines were once the mainstream approach, these protocols had limited expansion rates and did not lead to clinical application. However, in recent years, the development of a technique in which small molecules are added to cytokines has enabled the stable, long-term ex vivo expansion of human HSCs. Clinical trials of expanded umbilical CB using these techniques have been undertaken and have confirmed their efficacy and safety. In addition, we have successfully developed a recombinant-cytokine-free and albumin-free culture system for the long-term expansion of human HSCs. This approach could offer the potential for more selective expansion of human HSCs compared to previous protocols. This review discusses ex vivo culture protocols for expanding human HSCs and presents the results of clinical trials using these techniques, along with future perspectives.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells , Humans , Hematopoietic Stem Cell Transplantation/methods , Cytokines , Cell Differentiation , Hematopoiesis
2.
Exp Hematol ; 129: 104133, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036097

ABSTRACT

CRISPR/Cas gene editing has transformed genetic research and is poised to drive the next generation of gene therapies targeting hematopoietic stem cells (HSCs). However, the installation of the "desired" edit is most often only achieved in a minor subset of alleles. The array of cellular pathways triggered by gene editing tools produces a broad spectrum of "undesired" editing outcomes, including short insertions and deletions (indels) and chromosome rearrangements, leading to considerable genetic heterogeneity in gene-edited HSC populations. This heterogeneity may undermine the effect of the genetic intervention since only a subset of cells will carry the intended modification. Also, undesired mutations represent a potential safety concern as gene editing advances toward broader clinical use. Here, we will review the different sources of "undesired" edits and will discuss strategies for their mitigation and control.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Heterogeneity , Hematopoietic Stem Cells/metabolism , Mutation
3.
Cell Stem Cell ; 30(7): 987-1000.e8, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37385251

ABSTRACT

Gene editing using engineered nucleases frequently produces unintended genetic lesions in hematopoietic stem cells (HSCs). Gene-edited HSC cultures thus contain heterogeneous populations, the majority of which either do not carry the desired edit or harbor unwanted mutations. In consequence, transplanting edited HSCs carries the risks of suboptimal efficiency and of unwanted mutations in the graft. Here, we present an approach for expanding gene-edited HSCs at clonal density, allowing for genetic profiling of individual clones before transplantation. We achieved this by developing a defined, polymer-based expansion system and identifying long-term expanding clones within the CD201+CD150+CD48-c-Kit+Sca-1+Lin- population of precultured HSCs. Using the Prkdcscid immunodeficiency model, we demonstrate that we can expand and profile edited HSC clones to check for desired and unintended modifications, including large deletions. Transplantation of Prkdc-corrected HSCs rescued the immunodeficient phenotype. Our ex vivo manipulation platform establishes a paradigm to control genetic heterogeneity in HSC gene editing and therapy.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Genetic Heterogeneity , Hematopoietic Stem Cells , Phenotype , Clone Cells
4.
Nature ; 615(7950): 127-133, 2023 03.
Article in English | MEDLINE | ID: mdl-36813966

ABSTRACT

Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.


Subject(s)
Cell Culture Techniques , Cell Proliferation , Cytokines , Hematopoietic Stem Cells , Humans , Cell Proliferation/drug effects , Clone Cells/cytology , Clone Cells/drug effects , Clone Cells/metabolism , Fetal Blood/cytology , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Culture Techniques/methods , Albumins , Caprolactam , Polymers , Receptors, Thrombopoietin , Transplantation, Heterologous , Single-Cell Gene Expression Analysis
5.
Blood Adv ; 5(2): 438-450, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33496740

ABSTRACT

Dihydroorotate dehydrogenase (DHODH) catalyzes a rate-limiting step in de novo pyrimidine nucleotide synthesis. DHODH inhibition has recently been recognized as a potential new approach for treating acute myeloid leukemia (AML) by inducing differentiation. We investigated the efficacy of PTC299, a novel DHODH inhibitor, for myelodysplastic syndrome (MDS). PTC299 inhibited the proliferation of MDS cell lines, and this was rescued by exogenous uridine, which bypasses de novo pyrimidine synthesis. In contrast to AML cells, PTC299 was inefficient at inhibiting growth and inducing the differentiation of MDS cells, but synergized with hypomethylating agents, such as decitabine, to inhibit the growth of MDS cells. This synergistic effect was confirmed in primary MDS samples. As a single agent, PTC299 prolonged the survival of mice in xenograft models using MDS cell lines, and was more potent in combination with decitabine. Mechanistically, a treatment with PTC299 induced intra-S-phase arrest followed by apoptotic cell death. Of interest, PTC299 enhanced the incorporation of decitabine, an analog of cytidine, into DNA by inhibiting pyrimidine production, thereby enhancing the cytotoxic effects of decitabine. RNA-seq data revealed the marked downregulation of MYC target gene sets with PTC299 exposure. Transfection of MDS cell lines with MYC largely attenuated the growth inhibitory effects of PTC299, suggesting MYC as one of the major targets of PTC299. Our results indicate that the DHODH inhibitor PTC299 suppresses the growth of MDS cells and acts in a synergistic manner with decitabine. This combination therapy may be a new therapeutic option for the treatment of MDS.


Subject(s)
Myelodysplastic Syndromes , Oxidoreductases Acting on CH-CH Group Donors , Animals , DNA , Decitabine/pharmacology , Dihydroorotate Dehydrogenase , Mice , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics
6.
Blood ; 136(14): 1670-1684, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32492700

ABSTRACT

Additional sex combs-like 1 (ASXL1), an epigenetic modulator, is frequently mutated in myeloid neoplasms. Recent analyses of mutant ASXL1 conditional knockin (ASXL1-MT-KI) mice suggested that ASXL1-MT alone is insufficient for myeloid transformation. In our previous study, we used retrovirus-mediated insertional mutagenesis, which exhibited the susceptibility of ASXL1-MT-KI hematopoietic cells to transform into myeloid leukemia cells. In this screening, we identified the hematopoietically expressed homeobox (HHEX) gene as one of the common retrovirus integration sites. In this study, we investigated the potential cooperation between ASXL1-MT and HHEX in myeloid leukemogenesis. Expression of HHEX enhanced proliferation of ASXL1-MT-expressing HSPCs by inhibiting apoptosis and blocking differentiation, whereas it showed only modest effect in normal HSPCs. Moreover, ASXL1-MT and HHEX accelerated the development of RUNX1-ETO9a and FLT3-ITD leukemia. Conversely, HHEX depletion profoundly attenuated the colony-forming activity and leukemogenicity of ASXL1-MT-expressing leukemia cells. Mechanistically, we identified MYB and ETV5 as downstream targets for ASXL1-MT and HHEX by using transcriptome and chromatin immunoprecipitation-next-generation sequencing analyses. Moreover, we found that expression of ASXL1-MT enhanced the binding of HHEX to the promoter loci of MYB or ETV5 via reducing H2AK119ub. Depletion of MYB or ETV5 induced apoptosis or differentiation in ASXL1-MT-expressing leukemia cells, respectively. In addition, ectopic expression of MYB or ETV5 reversed the reduced colony-forming activity of HHEX-depleted ASXL1-MT-expressing leukemia cells. These findings indicate that the HHEX-MYB/ETV5 axis promotes myeloid transformation in ASXL1-mutated preleukemia cells.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genetic Predisposition to Disease , Homeodomain Proteins/genetics , Mutation , Myeloid Cells/metabolism , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Apoptosis/genetics , Biomarkers, Tumor , Biopsy , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Colony-Forming Units Assay , Disease Models, Animal , Gene Expression Profiling , Genetic Association Studies , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/metabolism , Humans , Immunophenotyping , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/mortality , Leukemia, Myeloid/pathology , Mice , Myeloid Cells/pathology , Prognosis , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism
7.
Eur J Haematol ; 97(2): 166-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26561366

ABSTRACT

Activated B cells have the capacity to present antigen and induce immune responses as potent antigen-presenting cells (APCs). As in other APCs, antigen presentation by B cells involves antigen internalization, antigen processing, and peptide loading onto MHC molecules. However, while the mechanism of antigen processing has been studied extensively in other APCs, this pathway remains elusive in B cells. The aim of this study was to investigate the MHC class II processing pathway in CD40-activated B cells (CD40Bs), as a model for activated, antigen-presenting B cells. Using CMV pp65 as a model antigen, we evaluated processing and presentation of the CD4 + T-cell epitope 509-523 (K509) by human CD40Bs in ELISPOT assays. As expected, stimulation of specific CD4 + T-cell clones was attenuated after pretreatment of CD40Bs with inhibitors of classic class II pathway components. However, proteasome inhibitors such as epoxomicin limited antigen presentation as well. This suggests that the antigen is processed in a non-classical, cytosolic MHC class II pathway. Further experiments with truncated protein variants revealed involvement of the proteasome in processing of the N and C extensions of the epitope. Access to the cytosol was shown to be size dependent. Epoxomicin sensitivity exclusively in CD40B cells, but not in dendritic cells, suggests a novel processing mechanism unique to this APC. Our data suggest that B cells process antigen using a distinct, non-classical class II pathway.


Subject(s)
Antigen Presentation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD40 Antigens/metabolism , Epitopes/immunology , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Lymphocyte Activation/immunology , Proteasome Endopeptidase Complex/metabolism , Antigen Presentation/drug effects , Chloroquine/pharmacology , Cytosol/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Oligopeptides/pharmacology , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
8.
Eur J Cancer ; 51(2): 146-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25480557

ABSTRACT

PURPOSE: This study was initiated to evaluate safety, toxicity, pharmacokinetics, and pharmacodynamics of treatment with MGN1703, a novel synthetic DNA-based toll-like receptor 9 (TLR9)-immunomodulator. METHODS: The study consisted of an escalating single dose regimen followed by a multiple dose part. Dose levels of 0.25, 2, 10, 30, and 60 mg of MGN1703 were administered subcutaneously over 6 weeks twice weekly. Patients with at least stable disease (SD) could participate in the extension phase of the study for six further weeks. Effects on the immune status were monitored. RESULTS: 28 patients with metastatic solid tumours were included. Fatigue and activated partial thromboplastin time (aPTT) prolongation were the only two cases of drug-related grade 3 Common Terminology Criteria adverse events (CTCAE). The most frequently reported drug-related adverse events were of CTC Grade ⩽2. There was no relationship between toxicity and dose and no patient was withdrawn from the study due to drug-related AE. No drug-related serious AE (SAE) were reported. Six out of 24 patients had SD after 6 weeks of treatment and three of those remained in SD after a total of 12 weeks. Four patients were further treated in a compassionate use programme showing long-term disease stabilisation for up to 18 months. Immune assessment of cell compartments showed a non-significant increase of TLR9 expressing naïve B cells during therapy. CONCLUSION: Twice weekly subcutaneous applications of MGN1703 in a dose of up to 60 mg are safe and well tolerated without dose-limiting toxicities. MGN1703 shows immune activation and anti-tumour efficacy in heavily pretreated patients. The recommended dose of 60 mg twice weekly is currently used in a phase II trial in small cell lung cancer and a phase III trial in colorectal cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , DNA/therapeutic use , Immunologic Factors/therapeutic use , Neoplasms/drug therapy , Toll-Like Receptor 9/agonists , Aged , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , DNA/adverse effects , DNA/pharmacokinetics , Dose-Response Relationship, Drug , Drug Administration Schedule , Fatigue/chemically induced , Female , Humans , Immunologic Factors/adverse effects , Immunologic Factors/pharmacokinetics , Injections, Subcutaneous , Lymphocyte Count , Male , Middle Aged , Neoplasm Metastasis , Neoplasms/metabolism , Neoplasms/pathology , Partial Thromboplastin Time , Toll-Like Receptor 9/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...